
1@solarwinds

Index Strategies for SQL Server Performance

Kevin Kline, Head Geek, SolarWinds

Thomas LaRock, Head Geek, SolarWinds

2@solarwinds

Kevin Kline
Head Geek™

Kevin has over 30 years experience in roles including

programmer, data scientist, DBA, enterprise architect, and

manager. He enjoys traveling, writing, teaching, and indie rock.

twitter.com/kekline

linkedin.com/in/kekline/

instagram.com/kevin_e_kline

facebook.com/kekline

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

3@solarwinds

Thomas LaRock
Head Geek

Thomas has over 20 years experience in roles including

programmer, developer, analyst, and DBA. He enjoys working

with data, probably too much to be healthy, really.

twitter.com/SQLRockstar

linkedin.com/in/sqlrockstar/

instagram.com/sqlrockstar

facebook.com/thomas.larock

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

4@solarwinds

Agenda

• Index structures and fundamentals

• Strategies for choosing good indexes

• Best practices for high-performance indexes

• Summary

• Q&A

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

5@solarwinds

POLL

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

In your organization, who creates
database indexes?

6@solarwinds

• Three primary structures to remember – tables without a clustered

index (Heap), tables with a clustered index, (CI) and non-clustered

indexes (NCI).

• All three structures use an 8Kb data page (8192b total/ 8096

available) for storage:

Page header

1 - Cooper

1

2 - Hofstadter

23

4 - Kripke

5 4

5 - Wolowitz

5

3 - Koothrappali

Page header: Contains PageID, Next Page,

Previous Page, amount of free space available,

the object ID of owning object, status, and more.

96 bytes total.

Slot array tracks logical order of records

Graphic by Rich Douglas, @sqlrich,

rdouglas@sentryone.com

Overview of Tables and Indexes

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

7@solarwinds

Leaf Pages

Root Page

Level 0

Intermediate

Pages Level 1

Level 2

IAM

Leaf Pages

Heap

…

… …

Index

Rows
Leaf

NCI

…
Doubly-

linked

list

Doubly-

linked

list

Heaps, Clustered, and Non-Clustered

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

8@solarwinds

Clustered vs. Non

Clustered index *is* the data, sorted based on key

Non-clustered index has its own key
• Points to the row (RID) for a heap, to the key for a clustered index

• Extents (sets of eight 8kb pages) may not be physically sorted

Like a clustered index key, narrower index is better

Should every table have a clustered index? In most systems, yes!

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

9@solarwinds

Heap Pros and Cons

Pros:

• Great for bulk loading (create indexes after)

• Freed space can be reused on delete + subsequent insert

Cons:

• Insert performance can be poor if space is reclaimed

• Updates lead to forwarding pointers

• 8-byte RID assigned to every row (RID is file:page:slot)

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

10@solarwinds

Considerations for Clustered

Narrow, static, unique, ever-increasing
• Narrow and static because key is repeated in every non-clustered index
• Unique because otherwise a unique identifier needs to be added to

each row
• Ever-increasing to avoid “bad” page splits and fragmentation

Some will argue a GUID is better – spread out I/O
• This is great for high-end, write-heavy workloads, until you have to read

On modern hardware, these factors are less important
• More on this later

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

11@solarwinds

Considerations for Non-Clustered

Consider an index a skinnier, sorted version of your table

Leading key column should support some balance of:

• Most selective

• Most likely to be used to sort

• Most likely to be used to filter

• Most likely to be used to join

• Less likely to change often (or at least less often than queried)

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

12@solarwinds

Benefits of Non-Clustered

Can have multiple (only one clustered)

Can support ordering not supported by clustered index

Can contain fewer columns and still “cover” many queries,

i.e., fewer I/O reads.

Can contain fewer rows (filtered) and still satisfy queries

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

13@solarwinds

Seek vs. Scan

Seeks are used for single-row or range scans
• Seek really means “where does the scan start”

• SQL Server chooses seeks versus scans based on statistics

Scans are generally used to look at the whole index / table
• Scan count in stats I/O does not necessarily mean full scan count

• E.g., a parallel query or partitioned query has multiple partial scans

Generally, a seek is better, but not universally true
• Depending on index structure, a scan can be better

• And a NC index scan can be better than a CIX/table scan

• Don’t blindly optimize for seeks, or assume a scan is bad news

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

14@solarwinds

• During design, try to maximize the number of rows per page

• Determine row size = data type consumption + overhead bytes

• Determine rows per page = 8096 / row size

• Full pages are best for read-heavy workloads. Less pages to read equals less I/O work

• Avoid:

• MAX data types, where possible, especially on heaps

• ONE BIG TABLE: Too many columns hanging on one primary key, usually 1st or 2nd normal form

• Redundant data or malformed data, as evidenced by lots of calculations, datepart function calls, isnull

function calls, concatenations, and shredding upon retrieval

• Column stuffing:

• Storing arrays (CSVs, XML, JSON to stuff multiple values into a single field)

• Parsing and validation are very cumbersome.

• Clustered index best practices:

• Narrow, static, unique (but not GUID), and ever-increasing columns

• Remember the clustered index is stored in every non-clustered index!

Full Pages vs. Read Performance

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

15@solarwinds

Full Pages vs. Write Performance

Remember:

Each write to leaf pages requires all non-clustered

index structures to be updated!

Leaf Pages

Root Page

Level 0

Intermediate
Pages

Level 1

Level 2

Page

Split
DML

Actual

place-

ment

• Upon creation of the clustered

index every page is 100% full

leaving no empty space on the leaf

or intermediate pages for added

data from INSERT or UPDATE

statements.

• Promotes logical table

fragmentation, if there are writes.

• Default fill factor of 0/100 can cause

costly page splits on some tables

for write-heavy workloads.

• Ways to fix:
• Rebuild or Reorg indexes

• Specify FILL FACTOR option to

leave open space in leaf pages

• Specify PAD_INDEX option pushes

fill factor up into intermediate pages

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

16@solarwinds

Power move? Implement Data Compression for huge performance
improvements

Index Analogy – Full Pages vs. an Old Time Bath

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

17@solarwinds

DEMO

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

T-SQL Demo of Index Performance

18@solarwinds

• Don’t forget the clustered index is stored in EVERY non-clustered index! The

shorter the clustered index, the less the storage and fewer I/Os.

• Remember composite keys are most useful from the leftmost column to the

rightmost column, in the order they appeared in the CREATE INDEX statement.

Example:

• Now, consider this index:

• ALTER TABLE yellow_pages ADD CONSTRAINT [UPKCL_sales] PRIMARY KEY

CLUSTERED ([lname], [fname], [street])

They can help. They can hurt.

LName

• Austin

• Hanso

• Linus

FName

• Kate

• Magnus

• Benjamin

Street

• 1010 Madison

• 315 Ajira

• 815 Oceanic

Performance Penalty for Concatenated Index

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

19@solarwinds

Works well with:
• WHERE lname = @a AND fname = @b AND street = @c

Also works well with:
• WHERE lname = @a AND fname = @b

How does the index work with this?
• WHERE fname = @b OR title_id = @c

Best practice? Use a surrogate key for the primary key and
then a natural key as an additional non-clustered index.

Might not be what you expect

What Happens When Querying a Concatenated Index

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

20@solarwinds

Covering Indexes – The Flipside of Concatenated Indexes

A covering index answers a query entirely from its own
intermediate pages, rather than going all the way down the tree to
leaf pages.

All columns referenced in the query need to be in the index. For
example:

• SELECT lname, fname
• FROM employee
• WHERE lname LIKE '%ttlieb%'

All columns in the index must be referenced in the query:
• CREATE INDEX employee_name_lvl ON employee (lname, fname)

Don’t confuse a covering index with an included columns index

An index covering the entire data requested by the query

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

21@solarwinds

Include Columns

• Included columns “come along for the ride”

• Copied into NC index structure, again to avoid lookups

• Can exceed 900b key length, can be types not allowed in key (e.g., MAX)

• Should additional columns be in the key or included?

• Generally:

• Only add columns that are small and queried often

• Don’t change an index to satisfy one query that does 12 LOB lookups

• If they are just in the SELECT list, INCLUDE

• If they are used in JOIN/WHERE/GROUP BY/ORDER BY, key if possible

The foil to the dreaded key/RID lookup

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

22@solarwinds

“Tipping Point”

Generally, if seek estimated to hit > 25-30% of pages, scan is better

Lookups needed with seek on non-covering indexes

• A lookup is executed for every row

Again, generally, tipping point looks like this:

• Decision can be guided by index coverage, row size, cost of lookups, hardware

• Often the tipping point will be much lower

You can’t always get what you want

http://www.sqlpassion.at/archive/2013/06/12/sql-server-tipping-games-why-non-clustered-indexes-are-just-ignored/

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

23@solarwinds

Sargability

The ability to actually *use* the index

Beware of applying functions against JOIN/WHERE columns
• WHERE DATEDIFF(DAY, Column, GETDATE()) = 0

• Not sargable – will scan – converting to a string is even worse

• WHERE Column >= @today AND Column < DATEADD(DAY, 1, @today)
• Sargable

WHERE CONVERT(DATE, Column) = @today
• Can be sargable, but there’s a catch – bad estimates – see link in notes

ORDER BY key column(s) won’t use index if it doesn’t cover

Surprising reasons why indexes might be unused

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

24@solarwinds

Creating Indexes: Rules of Thumb for CIs

• Clustered indexes are the actual physically written records

• A SELECT statement with no ORDER BY clause will return
data in the clustered index order

• 1 clustered index per table, 249 non-clustered indexes per table

• Highly (almost) recommended for every table!

• Very useful for columns sorted on GROUP BY and ORDER BY
clauses, as well as those filtered by WHERE clauses

• Place clustered indexes on the PK on high-intensity OLTP
tables

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

25@solarwinds

Creating Indexes: Rules of Thumb for NCIs

• Useful for retrieving a single record or a range of records

• Maintained in a separate structure and maintained as

changes are made to the base table

• Tend to be much narrower than the base table, so they can

locate the exact record(s) with much less I/O

• Has at least one more intermediate level than the clustered

index but are much less valuable if table doesn’t have a

clustered index

Non-clustered indexes

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

26@solarwinds

Creating Indexes: Short vs. Long Keys

• A “concatenated key” is an index with more than one
column:

• Up to 16 columns

• Up to 900 bytes

• Short keys usually perform better, from fewer I/Os.

• Concatenated keys, also called composite keys, are
evaluated from leftmost column to right (more on that later).
So be sure the columns are indexed in order from most
frequently used to least frequently used.

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

27@solarwinds

GUID vs. INT / BIGINT as Clustered Key

Constant debate – use GUID or INT for clustering key?

INT / BIGINT GUID SEQUENTIAL GUID

Pros

• Small

• Compresses well

• Fewer “bad” page splits

• Globally unique*

• Minimal hotspots

• Globally unique*

• Fewer “bad” page splits

Cons

• Can cause hotspots

• IDENTITY/SEQUENCE

issues on 2012+

• Ascending key problem

• Wide

• Compresses poorly

• Many “bad” page splits

• Heavy fragmentation

• Tough to troubleshoot

• Wide

• Compresses poorly

• Causes hotspots

• Tough to troubleshoot

* I’m not convinced – we’ll run out eventually, right?

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

28@solarwinds

GUID vs. INT / BIGINT Issues

I’m still a fan of minimalism
• Prefer INT / BIGINT mostly for memory footprint

Which would you rather troubleshoot?
• OrderID = 42

• OrderID = ‘2C0C06E1-28A0-46BF-8CC6-63BC437AB42F’

On modern hardware, performance differences can be minimal
• “Disk space is cheap” – as long as you have lots of memory too

• Modern CPUs and SSDs are fast

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

29@solarwinds

DEMO

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

DPA Index Recommendations in Action

30@solarwinds

Optimize Index I/O

• Minimize the number of pages you need to read
• Narrower indexes, narrower columns, compression, columnstore

• Minimize output columns to hopefully hit non-clustered and avoid lookups

• Keep statistics up to date (so memory grants are right)
• Otherwise tempdb may be required to help sorts and joins

• Avoid sorting by columns not supported by indexes
• Adding memory can keep bigger indexes in cache, but can’t help sort

• Minimize the number of indexes, especially in write-heavy workloads
• One wide index may be better than two skinny indexes

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

31@solarwinds

Summary

• Understand the Primary Usage of Table (read vs
read/write). This determines lots of things such as fill factor,
number of indexes, and which is column clustered index.

• (Almost) Always create primary key, clustering key.

• Manually add (non-clustered) indexes to foreign key
constraints and other important columns such as join
columns.

• Most important of all is to test, analyze, and retest. Don’t be
afraid to experiment!

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

32@solarwinds

POLL

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

Would you like to learn more?

33@solarwinds 33@solarwinds

solarwinds.com/DPA

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

https://www.solarwinds.com/DPA

34@solarwinds

Q&A

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

35@solarwinds

THANK
YOU

© 2021 SolarWinds Worldwide, LLC. All rights reserved.

36@solarwinds

The SolarWinds, SolarWinds & Design, Orion, and THWACK

trademarks are the exclusive property of SolarWinds Worldwide,

LLC or its affiliates, are registered with the U.S. Patent and

Trademark Office, and may be registered or pending registration

in other countries. All other SolarWinds trademarks, service

marks, and logos may be common law marks or are registered or

pending registration. All other trademarks mentioned herein are

used for identification purposes only and are trademarks of (and

may be registered trademarks) of their respective companies.

